Lesson 13. Improving Search: Finding Better Solutions

1 A general optimization model

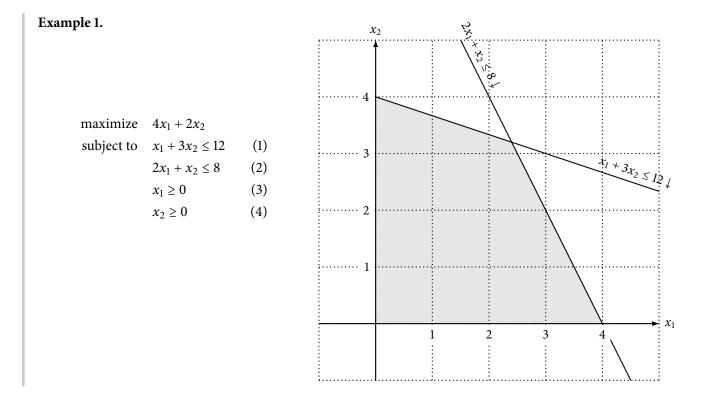
- For now, we will consider a general optimization model
- Decision variables: x_1, \ldots, x_n
 - Recall: a feasible solution to an optimization model is a choice of values for <u>all</u> decision variables that satisfies all constraints
- Easier to refer to a feasible solution as a vector: $\mathbf{x} = (x_1, \dots, x_n)$
- Let $f(\mathbf{x})$ and $g_i(\mathbf{x})$ for $i \in \{1, ..., m\}$ be multivariable functions in \mathbf{x} , not necessarily linear
- Let b_i for $i \in \{1, ..., m\}$ be constant scalars

minimize/maximize
$$f(\mathbf{x})$$

subject to $g_i(\mathbf{x}) \begin{cases} \leq \\ \geq \\ = \end{cases} b_i \text{ for } i \in \{1, \dots, m\}$

$$(*)$$

• Linear programs fit into this framework



2 Improving search algorithms, informally

- Idea:
 - Start at a feasible solution
 - Repeatedly move to a "close" feasible solution with better objective function value
- The neighborhood of a feasible solution is the set of all feasible solutions "close" to it
 - We can define "close" in various ways to design different types of algorithms
- Let's start formalizing these ideas

3 Locally and globally optimal solutions

• ε -neighborhood $N_{\varepsilon}(\mathbf{x})$ of a solution $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ (where $\varepsilon > 0$):

$$N_{\varepsilon}(\mathbf{x}) = \{\mathbf{y} \in \mathbb{R}^n : d(\mathbf{x}, \mathbf{y}) \le \varepsilon\}$$

where $d(\mathbf{x}, \mathbf{y})$ is the distance between solution \mathbf{x} and \mathbf{y}

• A feasible solution **x** to optimization model (*) is **locally optimal** if for some value of $\varepsilon > 0$:

 $f(\mathbf{x})$ is better than $f(\mathbf{y})$ for all feasible solutions $\mathbf{y} \in N_{\varepsilon}(\mathbf{x})$

• A feasible solution **x** to optimization model (*) is **globally optimal** if:

 $f(\mathbf{x})$ is better than $f(\mathbf{y})$ for all feasible solutions \mathbf{y}

• Also known simply as an **optimal solution**

- Global optimal solutions are locally optimal, but not vice versa
- In general: harder to check for global optimality, easier to check for local optimality

4 The improving search algorithm

- 1: Find an initial feasible solution \mathbf{x}^0
- 2: Set k = 0
- 3: while \mathbf{x}^k is not locally optimal **do**
- 4: Determine a new feasible solution \mathbf{x}^{k+1} that improves the objective value at \mathbf{x}^k
- 5: Set k = k + 1
- 6: end while
- Generates sequence of feasible solutions $\mathbf{x}^0, \mathbf{x}^1, \mathbf{x}^2, \dots$
- In general, improving search converges to a local optimal solution, not a global optimal solution
- Let's concentrate on line 4 finding better feasible solutions

5 Moving between solutions

• How do we move from one solution to the next?

 $\mathbf{x}^{k+1} = \mathbf{x}^k + \lambda \mathbf{d}$

• In Example 1:

Improving directions 6

- We want to choose **d** so that \mathbf{x}^{k+1} has a better value than \mathbf{x}^k
- **d** is an **improving direction** at solution \mathbf{x}^k if

 $f(\mathbf{x}^k + \lambda \mathbf{d})$ is better than $f(\mathbf{x}^k)$ for all positive λ "close" to 0

- How do we find an improving direction?
- The **directional derivative** of f in the direction **d** at solution \mathbf{x}^k is

• Maximizing $f: \mathbf{d}$ is an improving direction at \mathbf{x}^k if	
• Minimizing f : d is an improving direction at \mathbf{x}^k if	

• In Example 1:

• For linear programs in general: if **d** is an improving direction at \mathbf{x}^k , then $f(\mathbf{x}^k + \lambda \mathbf{d})$ improves as $\lambda \to \infty$

7 Step size

- We have an improving direction **d** now how far do we go?
- One idea: find maximum value of λ so that $\mathbf{x}^k + \lambda \mathbf{d}$ is still feasible
- Graphically, we can eyeball this
- Algebraically, we can compute this in Example 1:

8 Feasible directions

- Some improving directions don't lead to any new feasible solutions
- **d** is a **feasible direction** at feasible solution \mathbf{x}^k if $\mathbf{x}^k + \lambda \mathbf{d}$ is feasible for all positive λ "close" to 0
- Again, graphically, we can eyeball this
- A constraint is **active** at feasible solution **x** if it is satisfied with equality

- For linear programs:
 - We have constraints of the form:

$$a_1x_1 + a_2x_2 + \dots + a_nx_n \le b$$

 $a_1x_1 + a_2x_2 + \dots + a_nx_n \ge b$
 $a_1x_1 + a_2x_2 + \dots + a_nx_n = b$

• We can rewrite these constraints using vector notation:

 $\circ \ \, d \ \, \text{is a feasible direction at } x \ \, \text{if} \ \,$

- $\diamond \ \mathbf{a}^{\mathsf{T}}\mathbf{d} \leq 0 \text{ for each } \underline{\text{active constraint of the form } \mathbf{a}^{\mathsf{T}}\mathbf{x} \leq b$
- $\diamond \mathbf{a}^{\mathsf{T}} \mathbf{d} \ge 0 \text{ for each active constraint of the form } \mathbf{a}^{\mathsf{T}} \mathbf{x} \ge b$
- $\mathbf{a}^{\mathsf{T}}\mathbf{d} = 0 \text{ for each active constraint of the form } \mathbf{a}^{\mathsf{T}}\mathbf{x} = b$
- In Example 1:

9 Detecting unboundedness

- Suppose **d** is an improving direction at feasible solution \mathbf{x}^k to a linear program
- Also, suppose $\mathbf{x}^k + \lambda \mathbf{d}$ is feasible for all $\lambda \ge 0$
- What can you conclude?

10 Summary

- Line 4 boils down to finding an improving and feasible direction **d** and an accompanying step size λ
- We discussed conditions on whether a direction is improving and feasible
- We don't know how to systematically find such directions... yet